Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation.

نویسندگان

  • Belinda S Hall
  • Shane R Wilkinson
چکیده

Benznidazole, a 2-nitroimidazole, is the front-line treatment used against American trypanosomiasis, a parasitic infection caused by Trypanosoma cruzi. Despite nearly 40 years of use, the trypanocidal activity of this prodrug is not fully understood. It has been proposed that benznidazole activation leads to the formation of reductive metabolites that can cause a series of deleterious effects, including DNA damage and thiol depletion. Here, we show that the key step in benznidazole activation involves an NADH-dependent trypanosomal type I nitroreductase. This catalyzes an oxygen-insensitive reaction with the interaction of enzyme, reductant, and prodrug occurring through a ping-pong mechanism. Liquid chromatography/mass spectrometry (LC/MS) analysis of the resultant metabolites identified 4,5-dihydro-4,5-dihydroxyimidazole as the major product of a reductive pathway proceeding through hydroxylamine and hydroxy intermediates. The breakdown of this product released the reactive dialdehyde glyoxal, which, in the presence of guanosine, generated guanosine-glyoxal adducts. These experiments indicate that the reduction of benznidazole by type I nitroreductase activity leads to the formation of highly reactive metabolites and that the expression of this enzyme is key to the trypanocidal properties displayed by the prodrug.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a type I nitroreductase gene in non-virulent Trypanosoma rangeli

Trypanosomatid type I nitroreductases (NTRs), i.e., mitochondrial enzymes that metabolise nitroaromatic pro-drugs, are essential for parasite growth, infection, and survival. Here, a type I NTR of non-virulent protozoan Trypanosoma rangeli is described and compared to those of other trypanosomatids. The NTR gene was isolated from KP1(+) and KP1(-) strains, and its corresponding transcript and 5...

متن کامل

Microparticle Formation and Platelet Shrinkage in Type-I Glanzmman Thrombasthenia Platelets

Background: Activated normal platelets undergo many biochemical and morphological changes, some of which are apoptotic. Platelet derived microparticles and shrinked platelets as hallmark of platelet activation and apoptosis disperse surfaces containing procoagulant activity around injured vessels and tissues. This study was conducted to determine microparticles formation and platelet shrinkage ...

متن کامل

Benznidazole Biotransformation and Multiple Targets in Trypanosoma cruzi Revealed by Metabolomics

BACKGROUND The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to ...

متن کامل

Collagen type I prevents glyoxal-induced apoptosis in osteoblastic cells cultured on titanium alloy.

Advanced glycation end products (AGEs) irreversibly cross-link proteins with sugars and accumulate at a higher age and in diabetes, processes which can interfere with the integration of implants into the tissue. Glyoxal is a highly reactive glycating agent involved in the formation of AGEs and is known to induce apoptosis, as revealed by the upregulation of caspase-3 and fractin (caspase-3 bein...

متن کامل

Benznidazole biotransformation in rat heart microsomal fraction without observable ultrastructural alterations: comparison to Nifurtimox-induced cardiac effects.

Benznidazole (Bz) and Nifurtimox (Nfx) have been used to treat Chagas disease. As recent studies have de-monstrated cardiotoxic effects of Nfx, we attempted to determine whether Bz behaves similarly. Bz reached the heart tissue of male rats after intragastric administration. No cytosolic Bz nitroreductases were detected, although microsomal NADPH-dependent Bz nitroreductase activity was observe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2012